C.U.SHAH UNIVERSITY Summer Examination-2017

Subject Name: Discrete Mathematics

Subject Code: 4SC05DMC1		Branch: B.Sc.(Mathematics)	
Semester: 5	Date: 30/03/2017	Time: 02:30 To 05:30	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

- **a**) Define: Modular lattice.
- **b)** Draw a Hasse Diagram of $\langle S_6, \leq \rangle$ where \leq usual less than or equal to. Find the least and greatest element of it.
- c) Prove that if a = b then ab' + a'b = 0.
- **d**) Define: Set of atoms and find A(10) for Boolean algebra $\langle S_{30}, D \rangle$.
- e) If $\alpha(x_1, x_2) = (x_1 \oplus x_2)'$ then find $\alpha(3, 7)$ for $\langle S_{105}, D \rangle$.
- **f**) Prove that in usual notation $\begin{pmatrix} A' \\ \tilde{A} \end{pmatrix}' = A$.
- g) Define: Difference of two fuzzy sets.

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

- a) i) Let $\langle L, \leq \rangle$ be a lattice $a, b \in L$ then prove that $a \leq b \Leftrightarrow a * b = a \Leftrightarrow a \oplus b = b$ (07) ii) Prove that Every distributive lattice is modular.
- b) Define: Lattice as an algebraic system and If (L,*,⊕) is a lattice an algebraic system (07) then there exists an order relation ≤ on L such that (L,≤) is a lattice as a poset. Where a*b = glb {a,b}, a⊕b = lub {a,b} for ∀a, b ∈ L.

Q-3 Attempt all questions

a) Prove that $\langle S_{30}, GCD, LCM \rangle \cong \langle P(X), \cap, \cup \rangle$, where $X = \{a, b, c\}$. (07)

Page 1 of 3

(14)

b) Simplify the circuit given in the following figure using Boolean identities:

Q-4 Attempt all questions

- **a**) For a lattice $\langle P(\{a,b,c\}),\subseteq \rangle$, answer the following questions: (07)
 - i) Find cover of each element and draw the Hasse diagram.
 - ii) Find lower bound, upper bound, greatest lower bound, least upper bound of $A = \{\{a\}, \{a, b\}\}$.

iii) Find the least and greatest element of it.

b) Let
$$E = \{a, b, c, d, e\}, \quad A = \{(a, 0.3), (b, 0.8), (c, 0.5), (d, 0.1), (e, 0.9)\}$$
 and (07)
 $B = \{(a, 0.7), (b, 0.6), (c, 0.4), (d, 0.2), (e, 0.1)\}$ then find the following:

1)
$$A \cup B = 2$$
) $A \cdot B = 3$, $A + B = 4$, $A - B = 5$, $A \cap B = 6$, $(A')' = 7$, $B = 6$

Q-5 Attempt all questions

- a) Obtain the product of sum canonical form of the following expressions in three (05) variables by binary valuation tables $(x_1 \oplus x_2)' \oplus (x_1' * x_3)$.
- **b**) Prove that $(a * b)' = a' \oplus b'$. (05)
- c) Obtain the sum of product canonical form of the Boolean expression in three (04) variables $\alpha(x, y, z) = x \oplus (y * z')$.

Q-6 Attempt all questions

- Let $\langle L, *, \oplus, 0, 1 \rangle$ be a lattice and $a, b, c \in L$ then the
- **a)** $a \oplus (b * c) = (a \oplus b) * (a \oplus c) \Leftrightarrow a * (b \oplus c) = (a * b) \oplus (a * c).$ (05)
- b) State D'Morgans laws for fuzzy subsets and prove any one. (05)
- c) Find the cover of each element and draw Hasse diagram of $\langle L^3, \leq \rangle$; where $L = \{0, 1\}$. (04)

Q-7 Attempt all questions

a) Prove that $\langle P(X), \subseteq \rangle$ is a lattice, Where $X = \{a, b, c\}$. (05)

Page 2 of 3

(07)

(14)

- **b**) Find the minimal sum of products expression for the function f(x, y, z) = ab'c' + abc' + abc + ab'c + a'b'c by using Karnaugh map method. (05)
- c) Obtain circuit diagram representation for the Boolean expression $\alpha(x, y, z) = y' + [z' + x + (yz)'](z + x'y).$ (04)

(14)

Q-8 State and prove Stone's representation theorem.

Page 3 of 3

